
Supporting Information
Heeger, PNAS 2017
Extended discussion

The theoretical framework presented in this paper, of 
course, includes components previously proposed in 
computational/theoretical neuroscience, image processing, 
computer vision, statistics, and machine learning with arti-
ficial  neural  networks. Because of space limitations, a 
number of influential papers were not cited in the main text 
(1-27).

Variants and extensions
There are a number of variations of the computational 

framework, depending on the network architecture, output 
nonlinearity, and optimization algorithm.

The neural responses were modeled as dynamical 
processes that minimize an energy function over time, via 
gradient descent. But other optimization algorithms might 
converge more rapidly while providing a better characteri-
zation of empirical measurements of neural dynamics. 

The architecture (number of layers, number of chan-
nels per layer, interconnectivity between channels in adja-
cent layers) and spatial  weights determine the selectivity of 
the neurons. I used an architecture and spatial  weights 
that computed motion (Fig. 7 of the main text), but different 
choices would extract different features (or statistics) of the 
input. There need not be a strict hierarchy so that, for ex-
ample, there can be feedforward connections from V1 to 
V2 to V4 and also a parallel feedforward connection di-
rectly from V1 to V4. 

The temporal  weights determine the predictive basis 
functions. I used temporal  weights that conferred a set of 
predictive basis functions that are damped oscillators of 
various temporal frequencies, but different temporal 
weights might be used instead, corresponding to different 
predictive basis functions. An obvious variation is to re-
place the pair of temporal weights (wm in Eq. 3 of the main 
text) with a matrix of weights so that the responses of each 
neuron are predicted over time by a weighted sum of a 
large number other neurons, including neighboring neu-
rons in the same channel (e.g., that respond to stimuli at 
nearby spatial locations), and neurons from different chan-
nels in the same layer (e.g., that respond preferentially to 
different stimulus features). This is similar to classic  recur-
rent network models of working memory that maintain a 
memory representation with a self-sustaining pattern of 
persistent activity (28-32), and also to some models of 
perceptual organization, segmentation, and grouping (33-
36). 

The convolutions can be replaced with an equivalent 
computation that encompasses the physiological diversity 
across individual neurons. The convolution weights that 
determine the selectivity of each neuron in each channel 
should be thought of as a basis set, with the first basis 
function equal to the first channel’s weights, etc. For some 
basis sets and for some output nonlinearities (e.g., squar-
ing), any invertible linear transform of the basis set can be 
substituted (37-39). A different invertible linear transform 

can be applied at each location, thereby allowing the 
weights to be different from one location to the next (and 
explaining the diversity of tuning properties of neurons), 
without changing the nature of the representation.

In the current implementation, the same neurons per-
form both inference and prediction, but an alternative im-
plementation of the same principles would be to have two 
separate subpopulations of neurons. The first subpopula-
tion would be responsible for inference (minimizing both 
terms in Eq. 3 of the main text), while the second subpopu-
lation would be continuously predicting forward in time, 
based on the responses of the first subpopulation (mini-
mizing only the second term in Eq. 3 of the main text). 
These two subpopulations of neurons might be in the 
same cortical circuit or the prediction subpopulation of 
neurons might be in a different brain area.

Normalization and other output nonlinearities
The examples in this paper, only for the sake of sim-

plicity, used quadratic  output nonlinearities, but a computa-
tion called “the normalization model” has been found to be 
a better model (both theoretically and empirically) of the 
output nonlinearity (40). I developed the normalization 
model 25 years ago to explain stimulus-evoked responses 
of individual neurons in V1 (41, 42). The model has since 
been applied to explain physiological  measurements of 
neural  activity in a wide variety of neural systems (43-60), 
and behavioral/ perceptual analogs of those physiological 
phenomena (e.g., 53, 54, 59, 61-63). The defining charac-
teristic  of normalization is that the feedforward drive under-
lying the response of each neuron is raised to a power 
(e.g., squaring) and divided by a factor that includes a sum 
of activity of a pool  of neurons, analogous to normalizing 
the length of a vector (see below, Eq. S3). Squaring can 
be computed with a pair of neurons that have complemen-
tary weights (flipped in sign), each of which is half-squared 
(halfwave rectified and squared) and then summed (41). 
The half-squaring can be approximated by rectification 
with a high threshold (64, 65).

It has been known since the normalization model was 
first introduced that normalization can be implemented in a 
recurrent neural circuit with biophysically-plausible mecha-
nisms (40, 42, 55, 66-68), but only recently has there been 
progress in elucidating the cellular and biophysical 
mechanisms underlying normalization. Normalization is 
implemented by GABA-mediated presynaptic  inhibition in 
the olfactory system of the fruit fly (48, 69). Normalization 
in mammalian cortex, however, does not rely on GABA 
inhibition (70), but rather is caused by a decrease in exci-
tation (71). That is, the mechanisms underlying normaliza-
tion are different in different neural systems.

Sigmoids, rectified linear units, and max pooling are 
alternative output nonlinearities, common/popular in com-
putational neuroscience and machine learning, that are 
each related to normalization. The normalization model, 
because of the division, confers a saturating (sigmoidal) 
response as a function of the amplitude of the inputs. A 
rectified linear unit computes a linear sum of its inputs and 
subtracts a constant bias, followed by halfwave rectifica-
tion. The bias acts like a high threshold, that approximates 
a power function with different values of the bias corre-
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sponding to different powers (64, 65). Max pooling (also 
called softmax) transmits the most active response among 
a set of inputs (72). Max pooling can be approximated by 
normalization (73).

Learning the prior
The priors can be learned. For a prior that constitutes 

a permanent feature of the environment, an elegant solu-
tion is to adjust the convolution weights (i.e., “warp” the 
tuning curves) to match the statistics of the environment 
(74). The current theory handles the priors in a comple-
mentary way. Some priors, rather than being a permanent 
feature of the environment, are instead context-specific 
(e.g., matched to a particular task). The cue combination 
network (Fig. 5 of the main text) provides an example. 
What I have in mind is that this cue combination network is 
embedded in a larger hierarchical  network. The target val-
ues for the responses ŷ are learned as the mean re-
sponses of the neurons, averaged across a series of 
practice/training trials in which the cues are consistent with 
one another (no cue conflict), and both cues are reliable 
(i.e., with large stimulus strengths). These learned target 
responses propagate up the hierarchy, transformed to an 
abstract representation, and stored in memory. Just before 
each trial  of the task, this abstract representation is re-
called from memory at the top of the hierarchy, and the 
state of the network is set to behave like a generative 
model so the remembered prior is propagated via the 
feedback drive to a sensory representation, i.e., to recon-
struct the target response values. The state is then 
switched so that this sensory representation of the priors is 
combined with incoming sensory information to perform 
inference.

Brain states, neuromodulators, and oscillatory activity
The values of the state parameters (α and λ) deter-

mine whether neural responses are driven bottom-up, top-
down, or a combination of the two. These parameters also 
control  whether the neurons are primarily processing sen-
sory inputs that occurred in the past versus predicting the 
future. There is evidence that acetylcholine (ACh) plays a 
particular role in modulating the trade-off between bottom-
up sensory input versus top-down signals related to expec-
tancy and uncertainty (e.g., 75). It has also been hypothe-
sized that ACh signals when bottom-up sensory inputs are 
known to be reliable (76, 77). Consequently, it is reason-
able to hypothesize that α and/or λ might be controlled (at 
least in part) by ACh. Although ACh is released broadly 
throughout the cortex, its effect can be regionally specific 
(78), possibly offering a mechanism for how the values of 
the state parameters can differ across the hierarchy of 
brain areas. 

In addition, there is considerable evidence that atten-
tion modulates the gain of neural responses (51), suggest-
ing that α might be controlled also by attention, perhaps 
through the feedback drive (see paragraph above about 
learning the prior) or through a different set of feedback 
connections that modulate the gain of the convolutions v.

Neuromodulators might also control changes in state 
to enable learning. During inference, the neural responses 
are computed dynamically with fixed weights. During learn-

ing, the weights are adjusted to minimize the difference 
between the predicted and the actual neural responses. 
Neuromodulators might indicate when it is appropriate to 
adjust the weights (e.g., moments in time corresponding to 
prediction errors). Dopamine, for example, has been iden-
tified as signaling reward prediction-error (79). 

According to the theory, exploration depends on neural 
response variability, which might be controlled (at least in 
part) by noradrenaline (NA). Specifically, I added non-
stationary noise to the simulated neural responses to im-
plement a kind of stochastic optimization. I speculate that 
the time course of spontaneous NA fluctuations might con-
tribute to the time-varying standard deviation of this non-
stationary noise process. Subthreshold fluctuations in NA 
over time (as assessed by measuring pupil dilation) affect 
neural  response variability (80). Neural response variability 
exhibits an inverted U-shaped curve as a function of mem-
brane potential depolarization such that responses are 
most reliable for an intermediate level of depolarization 
and less reliable when the neural  membrane potential is 
either too close or too far from spike threshold. Neural 
membrane-potential  depolarization and pupil size both de-
pend on NA. For example, NA fluctuations might exhibit a 
1/f amplitude spectrum (81). Such a noise process can be 
computed by integrating white noise over time (analogous 
to the position of a particle undergoing Brownian motion); 
doing so with a leaky integrator is biologically plausible 
given the ubiquity of neural integrators (31, 32). It has 
been hypothesized that NA signals when something unex-
pected has occurred (76, 77), which would, according to 
the present theory, transiently increase the noise variance 
to explore alternative interpretations. NA has also been 
linked to alternations (i.e., exploration) during bistable per-
ception (82), an observation that might be explained by the 
current theory if perception is stable when the neural re-
sponse variability is low and prone to alternations when 
response variability is high.

This non-stationary noise process might also contrib-
ute to variability over time in behavioral performance. 
Measurements of behavioral performance as a function of 
arousal  exhibit an inverted U-shaped function, which is 
hypothesized to be caused by the relationship between NA 
and neural response variability (80, 83-85). It has been 
reported, for example, that residual reaction time (after 
subtracting the mean reaction time for any given experi-
mental  condition) exhibits a 1/f power spectrum for a vari-
ety of tasks (86). Behavioral measures of timing and tap-
ping also exhibit 1/f power spectra (87, 88).

Neural response variability might also be controlled (in 
part) by oscillations in brain activity, pseudo-periodic fluc-
tuations in neural  membrane potential, correlated across 
large populations of neurons. Such brain oscillations are 
readily observed with EEG, a well-known example of 
which is so-called alpha activity (~10 Hz). Subthreshold 
fluctuations in neural membrane potential affect neural 
response variability, as summarized above (80). I presume 
that such fluctuations have an impact on the reliability of 
stimulus-evoked activity with little or no impact on the 
mean responses (i.e., that the fluctuations are small  in any 
given neuron but that they are evident in EEG recordings 
which measures the correlated component of the mem-
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brane potential fluctuations across a large population of 
neurons). So I hypothesize that oscillations in brain activity 
might contribute to stochastic  optimization for exploring 
alternative perceptual and/or cognitive interpretations. The 
oscillation phase corresponding to minimal response vari-
ability would correspond to the more stable percepts and 
the phase corresponding to maximum response variability 
would correspond to less stable percepts. These periodic 
fluctuations in response variability (in service of optimiza-
tion) might, therefore, explain the empirical evidence for 
perceptual rhythms, i.e., that perception and perceptual 
performance fluctuate periodically and depend on the fre-
quency and phase of oscillatory activity (89).

Methods and derivations
Feedforward convolutional neural net

Deep convolutional neural  nets have an architecture 
that is based on a common model of sensory processing in 
the visual system, comprising a feedforward (pipeline 
processing) hierarchy of stages each comprising a bank of 
linear filters following by an output nonlinearity (Figs. 2A,B 
of the main text). This hierarchy of computations can be 
expressed as follows:

yjn
(i ) = ρz vjn

(i )( )  [S1]

vjn
(i ) = wjknq

(i−1)ykq
(i−1)

k
∑

q=1

N ( i−1)

∑
.

The values of y are the responses (proportional  to firing 
rates) of the neurons in each layer, v are the outputs of the 
linear weighted sums, w are weight matrices, and ρz is the 
output nonlinearity. The superscript (i) specifies the layer in 
the hierarchy; y(0) are the inputs to the multi-layered hierar-
chy. The subscripts n and q specify each of the channels in 
a layer, where N(i) is the number of channels in layer (i). 
The subscripts j and k specify the different neurons in a 
channel. The values of wjknq specify a matrix of weights 
connecting the kth neuron in channel q of layer (i-1) to the 
jth neuron of channel  n of layer (i). For all neurons in a 
channel, the weight matrices are assumed to be spatially 
shifted copies of one another (i.e., performing a spatial 
convolution, optionally with spatial subsampling). I have 
included the subscripts n and q in wjkqn only to clarify that 
the weights are different for different channels.

The examples in this paper use either linear outputs or 
quadratic output nonlinearities:

ρz v( ) = v  [S2]

ρz v( ) = 1
2
v2

.

Normalization is a more sophisticated model of the non-
linearity (40). The defining characteristic of normalization is 
that the response of each neuron is divided by a factor that 
includes a sum of activity of a pool of neurons: 

ρZ vjn
(i )( ) =

vjn
(i )( )2

βkqn
(i ) vkq

(i )( )2 + σ (i )( )2
k
∑

q
∑

. [S3]
The summation in the denominator is a weighted sum (i.e., 
local average) over neurons in the same layer with weights 
β. For each neuron j in channel n, these weights βkq are 
assumed to be spatially shifted copies of one another (i.e., 
performing a spatial  convolution). I have included the sub-
script n in βkqn only to clarify that the weights βkq are differ-
ent for different channels. The constant σ determines the 
contrast gain (the contrast of the visual stimulus that 
evokes half the maximal response). 

Theory of Cortical Function
I hypothesize that neural  responses minimize an en-

ergy function (or optimization criterion) across all  neurons 
in all  channels and layers (and a summation over time can 
also be included, see below):

E = α (i )λ (i )ρl y jn
(i ) − z jn

(i )( )
j
∑

n
∑

i=1

L

∑
 [S4]

 

+ α (i ) 1−λ (i )( )ρp yjn
(i ) − ŷ jn

(i )( )
j
∑

n
∑

i=1

L

∑

z jn
(i ) = ρz vjn

(i )( )

vjn
(i ) = wjknq

(i−1)ykq
(i−1)

k
∑

q=1

N ( i−1)

∑
.

This is a generalization of Eq. 1 of the main text with multi-
ple channels in each layer and a flexible choice for the 
output nonlinearities and cost functions. The values of y 
are again the neural responses (proportional to firing 
rates). The values of v are again the outputs of the linear 
weighted sums from the previous layer. The values of z are 
now the outputs after the nonlinearity (unlike the more 
common formulation above in which y are the outputs after 
the nonlinearity). The function ρz is again the output non-
linearity (Eq. S2). The values of ŷ in the second term rep-
resent a prior (or expectation) for the responses. These 
variables (y, x, v, z, and ŷ) are each functions of time be-
cause the inputs change over time with the sensory input. 
The functions ρl and ρp are cost functions, which are quad-
ratic for the examples in this paper:

ρl (u) =
1
2
u2

     
ρp (u) =

1
2
u2

, [S5]
although other cost functions could be readily substituted. 
The values of α and λ  (0 <  λ < 1) are state parameters that 
determine the tradeoffs between the two terms in the en-
ergy function at each layer.

The neural responses are modeled as dynamical 
processes that minimize this energy function over time 
(dropping the channel subscript n to simplify notation):
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τ
dyj

(i )

dt
= −

dE
dyj

(i )

. [S6]
The derivative of the energy function with respect to each 
neuron’s response (using quadratic  output nonlinearities 
and quadratic cost functions) is:

  [S7]

dE
dyj

(i ) =α
(i )λ (i ) yj

(i ) − z j
(i )( )+α (i ) 1−λ (i )( ) yj(i ) − !yj(i )( )+ dE

dzk
(i+1)

dzk
(i+1)

dyj
(i )

k
∑

.

Combining the previous two equations yields the following 
dynamical  system in which each neuron’s response is up-
dated over time:

τ
dyj

(i )

dt
= −α (i )λ (i ) f j

(i ) +α (i+1)λ (i+1)bj
(i ) −α (i ) 1− λ (i )( ) pj(i )

f j
(i ) = yj

(i ) − z j
(i )

 [S8]
bj
(i ) = yk

(i+1) − zk
(i+1)⎡⎣ ⎤⎦vk

(i+1)wkj
(i )

k
∑

pj
(i ) = yj

(i ) − ŷ j
(i )

.

This is the same as Eq. 2 of the main text except that I 
have included factors of 1/2 in the quadratic output non-
linearity and the quadratic  cost function. As noted in the 
main body of the paper, the first term in this expression is 
the feedforward drive f; with only this term the neural re-
sponses would be the same as the feedforward model  out-
lined above (i.e., y = z). The second term is the feedback 
drive b; this term drives the responses according to the 
mismatch between the responses at the next layer, i+1, 
and the feedforward drive from the ith layer. The third term 
is the prior drive p; with only this term the neural responses 
would be driven to the value of the prior (i.e., y = ŷ). The 
value of τ is a time constant.

Feedback connections
As noted in the main body of the paper, the feedback 

signals are selective for features that are represented at 
the earlier layer due to the transpose of the weight matrix. 
A simplified two-layer example illustrates:

E = 1
2

yj
(2) − z j

(2)( )2
j
∑

 [S9]

z j
(2) = 1

2
wjkyk

(1)

k
∑⎛⎝⎜

⎞
⎠⎟

2

= 1
2
vj
(2)( )2

vj
(2) = wjkyk

(1)

k
∑

dE
dyk

(1) =
dE
dzj

(2)

dzj
(2)

dyk
(1)

j
∑ = − yj

(2) − z j
(2)( )wjkvj

(2)

j
∑

.

In the form of a matrix tableau:

  [S10]


vj
(2)



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=



wjk



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


yk
(1)



⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟


dE
dyk

(1)



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= −


wkj



⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



yj
(2) − z j

(2)( )vj(2)



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

.

The feedforward drive depends on vj(2), which is computed 
as a weighted sum of the layer 1 responses yk(1) with 
weights wjk. The gradients of the energy function dE/dyk(1), 
which determine the feedback drives, are computed as a 
weighted sum of the mismatch between the responses and 
the feedforward drive (yj(2)-zj(2)) vj(2) using the transpose of 
the weight matrix wkj.

Inference (Fig. 3)
For each of the simulation results in Fig. 3 of the main 

text, the input, the prior ŷ, and the network state (deter-
mined by the values of λ and α) were all held constant over 
time. The responses of the neurons were initialized to 
small, random values (0 < y < 0.1) at time t = 0. The re-
sponses were computed with Eq. 2 of the main text (time 
constant: τ = 5 ms; time step: Δt = 1 ms), and the values 
were clipped (0 < y < 1) after each iteration.

Exploration (Fig. 4)
The responses were again computed with Eq. 2 of the 

main text (time constant: τ = 5 ms; time step: Δt = 10 ms), 
the values were again clipped (0 < y < 1), and noise was 
added to each neuron’s response at each time step. The 
noise was statistically independent across neurons and 
over time, but non-stationary. All neurons had the same 
noise standard deviation at each moment in time, but the 
noise standard deviation varied over time. Specifically, the 
time course of the standard deviation had a 1/f  amplitude 
spectrum for frequencies greater than ~1 Hz. The noise 
process was computed by taking Gaussian white noise 
and filtering it with a leaky integrator (i.e., a first-order dif-
ferential equation or exponential  low pass filter) with time 
constant = 100 ms. The noise added to each neuron at 
each time point was drawn (independently for each neuron 
and each time point) from a normal  distribution with the 
corresponding standard deviation.

One-layer time-series prediction (Fig. 6)
The one-layer time-series prediction network (Fig. 6 of 

the main text) optimized the following energy function:
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E = 1
2

λ(t ) Re ym
(1) (t )( )

m
∑⎛⎝⎜

⎞
⎠⎟
− y(0) (t )

⎡

⎣
⎢

⎤

⎦
⎥

2

t
∑

 [S11]

 
+ 1
2

1− λ(t )( ) ym
(1) (t )− ŷm

(1) (t )
2

m
∑⎡
⎣⎢

⎤
⎦⎥t

∑
ŷm

(1) (t ) = ym
(1) (t − Δt ) wm

(1)

wm
(1) Δt( ) = ei2πωm

(1)Δt
.

This is a different way of writing Eq. 3 of the main text us-
ing the notational convenience of complex numbers and 
complex exponentials (instead of sines and cosines). It is a 
global optimization criterion; the summation is over all  neu-
rons and over time. The values of ym are the complex-
valued responses of a subpopulation of neurons that share 
the same input y(0), the values of ωm specify the frequen-
cies of the predictive basis functions, wm are temporal 
weights (a pair of numbers for a each ωm), and Δt is a dis-
crete time step. The complex values can be represented 
by the responses of a pair of neurons (Eq. 3 of the main 
text), but the complex-exponential notation is convenient. 
The state parameter λ can change over time.

The derivative of E with respect to ym(t), can be used to 
find a local minimum of E by gradient descent:

Δym
(1) (t ) = −r ∂E

∂ym
(1) (t )

= −r fm
(1) (t )+ pm

(1) (t )⎡⎣ ⎤⎦
, [S12]

where fm is the feedforward drive (note that there is no 
feedback drive in this one-layer example), pm is the prior 
drive, r specifies a step size, and ym(t) is updated simulta-
neously for all time points t. I used Eq. S12 to implement a 
batch algorithm, to compute the global minimum for all 
neurons and all time samples (Fig. 6 of the main text). This 
batch algorithm updated all of the neural  responses at all 
time samples repeatedly until it converged. Other optimiza-
tion algorithms could be used instead; For example, I have 
implemented an incremental approximation (see below).

The expressions for fm and pm depend on whether 
there is an input (for t ≤ 0) or not (for t > 0), and whether or 
not t is an endpoint (e.g., for a finite duration simulation 
and/or with an incremental algorithm for which t = 0 is al-
ways an endpoint because the input for the next time step 
is in the future). The feedforward drive is: 

fm
(1) (t ) = λ Re ym

(1) (t )
m
∑
⎛

⎝
⎜

⎞

⎠
⎟− y(0) t( )

⎡

⎣
⎢

⎤

⎦
⎥

, [S13]
when there is an input and 0 otherwise. The prior drive is:

pm
(1) (t ) = 1−λ(t )( ) 2ym(1) (t )− ym(1) (t − Δt )wm

(1) (Δt )− ym
(1) (t + Δt )wm

(1) (−Δt )( )
pm
(1) (t ) = 1−λ(t )( ) ym(1) (t )− ym(1) (t + Δt )wm

(1) (−Δt )( )  [S14]
pm
(1) (t ) = 1−λ(t )( ) ym(1) (t )− ym(1) (t − Δt )wm

(1) (Δt )( ) ,
when t is not an endpoint, when t is the first time sample, 
and when t is the last time sample, respectively.

For the simulation results (Fig. 6 of the main text), the 
input was a sum of two sinusoids (2 Hz, amplitude 1; 8 Hz, 
amplitude 1/2) for past time (t ≤ 0) and nonexistent for fu-
ture time (t > 0). I.e., the first term of E in Eq. S11 was set 
to 0 (ignoring the input entirely) for t > 0. This could be im-
plemented with two separate subpopulations of neurons, 
one of which minimizes both terms in Eq. S11 and is re-
sponsive to the input, while the second subpopulation 
minimizes only the second term in Eq. S11 and is continu-
ously predicting forward in time (see Variants and exten-
sions). Regardless, this is different from setting the input to 
0 and minimizing both terms of E. If the input was set to 0 
for t > 0 (rather than ignoring it entirely) then the responses 
decayed over time; the value of λ determined rate at which 
the responses decayed (see below).

Unlike the examples in Figs. 3 and 4 of the main text, 
the responses were not clipped. The negative values for 
the responses can be accommodated with positive firing 
rates by replacing each quadrature pair with 4 neurons, 
each with halfwave-rectified responses and 4 different 
temporal phases offset by 90°.
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Fig. S1. One-layer time-series prediction with incremental algorithm. Compare with Fig. 6A of the main text. A. Input 
is a sum of two sinusoids for past time (t ≤ 0) and nonexistent for future time (t > 0). B,C. Input is 0 for t > 0. Top row, input. 
Bottom row, output. Blue curves in the bottom row, sum of the responses of the neurons representing the real parts of ym. 
Green curves, sum of neural responses representing the imaginary parts of ym. A,B. State: λ = 0.1 for t ≤ 0 and λ = 0.01 for 
t > 0 (same as Fig. 6 of the main text). C. State: λ = 0.1 for t ≤ 0 and λ = 0.001 for t > 0.

Time (msec)
0-3000 -2000 -1000 1000

A B C

0

-2

2

0

-2

2

R
es

po
ns

e

0-3000 -2000 -1000 1000 0-3000 -2000 -1000 1000



An incremental (causal) algorithm was also imple-
mented (Fig. S1), analogous that in Eq. S8. The prior drive 
for the incremental  algorithm used the 3rd line of Eq. S14, 
so that the change in responses depended on only the 
present input and the present and past responses. In prac-
tice, fewer than 10 iterations were needed for each time 
step of the incremental algorithm. The results depended 
on whether the input was nonexistent for t > 0 (Fig. S1A) or 
0 for t > 0 (Figs. S1B,C). For nonexistent input, the first 
term of E in Eq. S11 was set to 0 (ignoring the input en-
tirely) for t > 0. If the input was set to 0 for t > 0 (rather than 
ignoring it entirely) then both terms of E were minimized, 
and the responses decayed over time; the value of λ de-
termined rate at which the responses decayed (Figs. 
S1B,C).

Multi-layer prediction of periodic motion (Fig. 7)
The multi-layer prediction network optimized the fol-

lowing energy function:

E = 1
2

α (i ) (t )λ (i ) (t ) Re ynm
(i ) (x, t )( )

m
∑⎛⎝⎜

⎞
⎠⎟
− zn

(i ) (x, t )
⎡

⎣
⎢

⎤

⎦
⎥

2

t
∑

n
∑

i=1

L

∑

 
+ 1
2

α (i ) (t ) 1− λ (i ) (t )( ) ynm
(i ) (x, t )− ŷnm

(i ) (x, t )( )2
m
∑⎡
⎣⎢

⎤
⎦⎥t

∑
n
∑

i=1

L

∑
ŷnm

(i ) (x, t ) = ynm
(i ) (x, t − Δt ) wm

(i )
 [S15]

wm
(i ) Δt( ) = ei2πωm

( i )Δt
.

Here, I dropped the subscript j and instead use x to denote 
the different neurons in each channel in terms of the spa-
tial  locations of their receptive fields. The rest of the nota-
tion is defined above (Eqs. S4, S11). It is again a global 
optimization criterion; the summation is over all neurons in 
all channels and all layers, and over time.

To denote the specific multi-layer motion-prediction 
network (Fig. 7 of the main text), it is helpful to break it 
down and write each layer separately. The total energy 
was the sum of the energies in each layer:

E = E (1) + E (2) + E (3)
. [S16]

Layer 1 had one channel:

E (1) =
1
2

α (1)λ (1) Re ym
(1)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− y(0)

⎡

⎣
⎢

⎤

⎦
⎥

2

t
∑

 [S17]

  
+
1
2

α (1) 1−λ (1)( ) ym(1) − ŷm(1)( )2
m
∑

t
∑

.

The values of y(0)(x,t) are the output of a simplified model  of 
retinal processing consisting of a temporal filter at each 
spatial  location (see below for details). The responses y 
are functions of both space and time, and the state pa-
rameters α and λ  also change over time, but I have 
dropped x and t from this equation (and in most of those 
that follow) to simplify the notation. 

Layer 2 had four channels:

E (2) =
1
2

α (2)λ (2) Re ynm
(2)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− z j

(2)
⎡

⎣
⎢

⎤

⎦
⎥

2

n
∑

t
∑

 [S18]

    
+
1
2

α (2) 1−λ (2)( ) ynm(2) − ŷnm(2)( )2
m
∑

n
∑

t
∑

zn
(2) (x, t ) =

1
2
vn
(2) (x, t )( )2

vn
(2) (x, t ) = wn1

(1) (ξ − x) Re ym
(1) (x, t )( )

m
∑

⎡

⎣
⎢

⎤

⎦
⎥

ξ

∑

         
+ wn2

(1) (ξ − x) Im ym
(1) (x, t )( )

m
∑

⎡

⎣
⎢

⎤

⎦
⎥

ξ

∑
,

The last line expresses vn as a sum of convolutions, where 
n indexes the 4 channels, and wn1 and wn2 are the spatial 
weights of the convolution kernels (Fig. 7C of the main 
text; Eq. S23). The derivatives, used for gradient descent, 
are:

dE (2)

dzn
(2) = −α

(2)λ (2) ynm
(2)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− zn

(2)
⎡

⎣
⎢

⎤

⎦
⎥

n
∑

 [S19]
dzn

(2) (x, t )

dym
(1) (x, t )

= vn
(2) (x, t )

dvn
(2) (x, t )

dym
(1) (x, t )

           
= vn

(2) (x, t ) wn1
(1) (x)+ iwn2

(1) (x)⎡⎣ ⎤⎦ .

Layer 3 had two channels:

E (3) =
1
2

α (3)λ (3) Re ynm
(3)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− zn

(3)
⎡

⎣
⎢

⎤

⎦
⎥

2

n
∑

t
∑

 [S20]

   
+
1
2

α (3) 1−λ (3)( ) ynm(3) − ŷnm(3)( )2
m
∑

n
∑

t
∑

z1
(3) = Re y1m

(2)( )
m
∑ + Re y2m

(2)( )
m
∑

z2
(3) = Re y3m

(2)( )
m
∑ + Re y4m

(2)( )
m
∑

dE (3)

dzn
(3) = −α

(3)λ (3) ynm
(3)

m
∑
⎛

⎝
⎜

⎞

⎠
⎟− zn

(3)
⎡

⎣
⎢

⎤

⎦
⎥

n
∑

 
dz1

(3)

dy1m
(2) = 1

   

dz1
(3)

dy2m
(2) = 1

   

dz2
(3)

dy3m
(2) = 1

   

dz2
(3)

dy4m
(2) = 1

,

and the other derivatives of zj(3) with respect to ykm(2) are 
zero.

The simulation results in Fig. 7 of the main text were 
computed as follows. The input was a sum of two contrast-
modulated sinusoids for past time (t ≤ 0): 
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s x,t( ) = c t( )sin 2πωxx −2πωtt( )  [S21]

      
+ 1− c t( )⎡⎣ ⎤⎦sin 2πωxx+2πωtt( )

c(t) = 1
2
1+ cos 2πωmt( )⎡⎣ ⎤⎦

,

where ωm = 1 Hz was the modulation frequency, ωx = 8 
cycle/deg was the spatial  frequency, and ωt = 8 Hz was the 
grating temporal frequency, so that the speed of motion 
was 1 deg/sec. The stimulus was sampled spatially with 
120 samples per degree of visual angle (approximately 
equal to the sampling of cone photoreceptors in the fovea 
of the primate retina) and with 1 ms temporal sampling.

The input was nonexistent for future time (t > 0). As for 
the simulation in Fig. S1, the responses decayed to 0 over 
time if the input was set to 0 for t > 0 (rather than ignoring it 
entirely), and the value of λ determined rate at which the 
responses decayed.

A simplified model of retinal processing was computed 
as a cascade of exponential low-pass filters (Fig. 7A of the 
main text):

y(0) (x, t ) = f3(x, t )− f5 (x, t )  [S22]

τ f
df1(x, t )
dt

= − f1(x, t )+ s(x, t )

τ f
dfn+1(x, t )

dt
= − fn+1(x, t )+ fn (x, t )

,

where y(0) was the retinal output (i.e., the input to the multi-
layer motion-prediction network) at each spatial sample x, 
and τf = 12 ms was the time constant of each of the low-
pass filters. 

Layer 1. The layer 1 weights were the identity matrix 
and the output was linear, so that the layer 1 responses 
were driven to copy the retinal  input. Layer 1 comprised a 
pair of neurons corresponding to each spatial location, all 
with the same temporal frequency tuning that matched that 
of the sinusoidal grating (ωm = 8 Hz). One neuron in each 
pair represented the real part of the complex-valued re-
sponses and the other neuron in each pair represented the 
imaginary part. For each such pair of neurons, the time-
courses of the responses were offset by a 90° phase shift.

Layer 2. The layer 2 weights were constructed from 
even- and odd-phase spatial  Gabor functions (Fig. 7B of 
the main text). Each of these 2 spatial  weighting functions 
was convolved with the responses of each of the two spa-
tial  arrays of layer 1 responses to yield 4 space-time sepa-
rable combinations. Direction-selective responses were 
computed as sums and differences of these space-time 
separable responses (90), resulting in 4 direction-selective 
channels, two of which were a quadrature pair that pre-
ferred leftward motion, and two of which were a quadrature 
pair that preferred rightward motion. The layer 2 output 
nonlinearity was squaring. Each of the 4 direction-selective 
channels was combined with 2 predictive basis functions: 
0 Hz and 16 Hz (i.e., twice the temporal frequency in layer 
1 because the output nonlinearity was quadratic). 

The Gabor functions used for the spatial weights in 
layer 2 (Fig. 7B of the main text) were:

ws (x)= exp x2 /σ 2( )sin 2πωxx( )
 [S23]

wc(x)= exp x2 /σ 2( )cos 2πωxx( )

w11
(1)(x)=ws (x)

w21
(1)(x)=wc(x)

w31
(1)(x)= −ws (x)

w41
(1)(x)=wc(x)    

w12
(1)(x)=wc(x)

w22
(1)(x)= −ws (x)

w32
(1)(x)=wc(x)

w42
(1)(x)=ws (x) ,

where ωx = 8 cycle/deg was the preferred spatial frequency 
and σ = 1/16 degrees of visual  angle determined the extent 
of the spatial weights.

Layer 3. There were two channels in layer 3. The feed-
forward drive for the first channel summed the quadrature 
pair of leftward-selective layer 2 responses, and summed 
across space. Likewise, the feedforward drive for the sec-
ond channel summed the quadrature pair of rightward-
selective layer 2 responses, and summed across space. 
The layer 3 output was again linear. Layer 3 had two pre-
dictive basis functions: 0 Hz and 1 Hz (i.e., matching the 
frequency of periodic motion in the stimulus).

The feedforward processing in this network, with no 
feedback and no prior (i.e., with λ=1), computed leftward 
and rightward “motion energy” (41, 90). It is called “motion 
energy” because it depends on the local (in space, time, 
orientation, spatial frequency, and temporal  frequency) 
spectral  energy of the stimulus. But the term “motion en-
ergy” has nothing to do with the energy function that is be-
ing minimized (Eq. S15). Layer 1 comprised a pair of neu-
rons at each spatial location, with the same temporal fre-
quency tuning. One of the neurons in each pair responded 
with a copy of the input (provided by the simplified 
temporal-filtering model of retinal  processing). The other 
neuron responded with a phase-shifted copy of the input. 
The phase shift emerged because of the quadrature-phase 
(sine and cosine) temporal weights. As an aside, this 
solves a problem for models of visual motion perception, 
which rely on having pairs of neurons that respond with 
temporal  phases offset by 90° (90). The feedforward drive 
in layer 2 depended on odd- and even-phase spatial 
weights, and a quadrature pair of temporal filters (the real 
and imaginary parts of the layer 1 responses), combined 
according to Eq. S18. This yielded four direction-selective 
channels: a quadrature pair selective for rightward motion 
and a quadrature pair selective for leftward motion (90). 
The feedforward drive in layer 3 computed motion energy, 
a sum of the squared responses of each quadrature pair.

The neural responses corresponding to the global 
minimum of E were computed for all neurons and all time 
steps (time step: Δt = 10 ms), using the “batch” algorithm 
(see above). There was a second local  minimum for which 
the network predicted that the periodic  motion would dissi-
pate, with a clear local maximum separating the two local 
minima.
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Bayesian cue combination (Fig. 5)
The energy function for the cue-combination network 

was:

E y(1)( ) = 12αλ yn
(1) − zn

(1)( )2
n
∑ +

1
2
α 1−λ( ) yn

(1)

ĝ
− ŷn

(1)⎛

⎝
⎜

⎞

⎠
⎟

2

n
∑

ĝ = yn
(1)

n
∑

 [S24]
zn
(1) =w1yn1

(0) +w2yn2
(0)

w1 =
σ 2
2

2 σ 1
2 +σ 2

2( )

w2 =
σ 1
2

2 σ 1
2 +σ 2

2( )
,

where to yn1(0) and to yn2(0) are the responses of two sets of 
input neurons and yn(1) are the responses of the output 
neurons (Fig. 5A of the main text). Each of the input neu-
rons was tuned for depth, responding most strongly to a 
preferred depth value (Fig. 5B of the main text). Conse-
quently, each input neuron was from a different channel, 
indexed by n. (A channel by the nomenclature I’ve adopted 
is a spatial array of neurons with identical  stimulus selec-
tivity, whereas each of the input neurons in this network 
responded preferentially to different depths at the same 
spatial  location.) Both sets of input neurons had the same 
tuning curves, but responded to each of two different cues 
(e.g., stereo and motion parallax). The output neurons had 
the same tuning curves as the input neurons because the 
feedforward drive depended on a weighted sum of the re-
sponses of input neurons with identical  tuning curves, with 
weights w1 and w2 (Eq. S24, 3rd line).

Each tuning curve, denoted ψn(s), where s is stimulus 
depth, was one cycle of a raised cosine, and the spacing, 
amplitudes, and widths of the raised cosines were chosen 
so that the tuning curves summed to 1:

ψn s( )∝ cos
2π s− sn( )

ν

⎡

⎣
⎢

⎤

⎦
⎥+1

 [S25]

 
for −π <

2π s− sn( )
ν

< π

 

ψn s( )
j
∑ =1

,

The value of ν determined the width of the tuning curves, 
and the values of sn determined the preferred depths (the 
peaks of the tuning curves). The preferred depths were 
evenly spaced and the widths were selected to be even 
multiples of the spacing. The spacing and width also de-
termined the amount of overlap, overlap = spacing / 2ν; the 
overlap was 4 for the simulation results in Fig. 5 of the 
main text.

The responses of the input neurons depended on the 
strengths of the two cues (g1 and g2), and the responses of 
the input neurons were presumed to be noisy (additive, 
independent, normally-distributed):

yn1
(0) ∼ N g1ψn s( ),σ 1

2( )  [S26]
yn2
(0) ∼ N g2ψn s( ),σ 2

2( ) ,

where σ1 and σ2 are the standard deviations of the noise. If 
σ1 = σ2 then the two cues were equally reliable; otherwise 
not.

The responses of the output neurons were modeled as 
dynamical  processes (Eq. S6) that minimized this energy 
function (Eq. S24) over time, subject to yn(1) ≥ 0. 

The prior for the response of the nth output neuron was 
defined in terms of the tuning curves. The two example 
priors shown in Fig. 5C of the main text corresponded to 
ŷn(1) = ψn(0) and ŷn(1) = ψn(-0.5) + ψn(0.5). Each of these pri-
ors for the responses of the output neurons conferred a 
prior over stimuli:

p0 s( )∝ exp −
1
2σ 0

2 ψn (s)− ŷn
(1)( )2

n
∑

⎡

⎣
⎢

⎤

⎦
⎥
, [S27]

where σ0 specified the reliability of the prior.

The readout was defined as: 

h s | y(1)( ) = exp − hn s | yn
(1)( )

n
∑

⎡

⎣
⎢

⎤

⎦
⎥

 [S28]

hn s | yn
(1)( ) = 12αλ yn

(1) − ĝψ n (s)( )2

             
+ 1
2
α 1− λ( ) yn

(1)

ĝ
−ψ n (s)

⎛
⎝⎜

⎞
⎠⎟

2

.

The readout h transformed the vector of responses of the 
output neurons to a continuous function of s that was ap-
proximately proportional to the Bayes-optimal  posterior (as 
derived below). A variant of the readout computed a depth 
estimate and an uncertainty:

ŝ =
skh sk | y

(1)( )
k
∑

h sk | y
(1)( )

k
∑

 [S29]

σ ŝ
2 =

s j − ŝ( )2 h sk | y
(1)( )

k
∑

h sk | y
(1)( )

k
∑

,

where the depth estimate (or percept) ŝ was approximately 
equal to the mean of the posterior, and the uncertainty σŝ 
was approximately equal  to the standard deviation of the 
posterior. The value of k indexes a finite number of sam-
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ples of s. Both variants of the readout (Eqs. S28 and S29) 
depended only the responses of the output neurons yn(1), 
the tuning curves ψn(s), and the values of the state pa-
rameters λ and α. The Bayes-optimal posterior, on the 
other hand, depends on the responses of the input neu-
rons yn1(0) and  yn2(0), the noise standard deviations σ1 and 
σ2, the prior over stimuli p0(s), and the reliability of the prior 
σ0.

Next I show that the readout is approximately propor-
tional  to the Bayes-optimal  posterior, if the values of the 
state parameters are chosen correctly. There are two limit-
ing cases corresponding to: 1) when the stimulus strengths 
of both cues are small, and 2) when the stimulus strengths 
of one or both cues are large. To begin, we need expres-
sions for the probability distribution of zn, and for the values 
of the state parameters.

The values of zn were normally distributed because 
they were computed as weighted sums of normally-
distributed random variables (Eq. S24, 3rd line):

zn
(1) ∼ N gψn s( ),σ 2( )   [S30]
g = w1g1 +w2g2  (see Eq. S24)

σ 2 = w1
2σ 1

2 +w2
2σ 2

2 = σ 1
2σ 2

2

σ 1
2 +σ 2

2
. (see Eq. S24)

The state parameters were chosen based on the reli-
abilities of each of the two cues and the reliability of the 
prior:

α = r0 + r1 + r2  [S31]

λ = r1 + r2
r0 + r1 + r2

r0 =
1
σ 0

2    r1 =
1
σ 1

2    r2 =
1
σ 2
2

.

where r1 and r2 are the reliabilities of each of the two cues, 
and r0 is the reliability of the prior. For these values of the 
state parameters:

αλ = 1
σ 2

 [S32]

α 1− λ( ) = 1
σ 0
2

.

It is helpful to rewrite the readout:

h s | y(1)( ) = exp − 12αλ yn
(1) − ĝψn (s)( )2

n
∑ −

1
2
α 1−λ( ) yn

(1)

ĝ
−ψn (s)

⎛

⎝
⎜

⎞

⎠
⎟

2

n
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

        
= exp − 1

2
α λĝ2 +1−λ( ) yn

(1)

ĝ
−ψn (s)

⎛

⎝
⎜

⎞

⎠
⎟

2

j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ [S33]

Case 1: When the stimulus strengths of both cues are 
small, the readout is approximately proportional to the prior 
over s. If both cues are weak:

ĝ2 ≪ 1− λ( )  [S34]

λĝ2 +1− λ( ) = 1− λ( ) λ ĝ2

1− λ
+1⎛

⎝⎜
⎞
⎠⎟
≈ 1− λ( )

.

In addition, when both stimulus strengths are weak, then 
the second term of E (Eq. S24) dominates and the re-
sponses converge to values that are proportional  to the 
priors, i.e., 

yn
(1)

ĝ
≈ ŷn

(1)

. [S35]
Consequently, the readout (Eq. S33) can be approximated:

    [S36]

h s | y(1)( ) ≈ exp − 12α 1−λ( ) yn
(1)

ĝ
−ψn (s)

⎛

⎝
⎜

⎞

⎠
⎟

2

n
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (see Eqs. S33 and S34)

           
≈ exp − 1

2σ 0
2 ŷn

(1) −ψn (s)( )2
n
∑

⎡

⎣
⎢

⎤

⎦
⎥

  (see Eqs. S32 and S35)

           ∝ p0 (s) , (see Eq. S27)

where p0(s) is the prior over s.

Case 2: When the stimulus strengths of one or both 
cues are large, the readout is approximately proportional 
to the likelihood. If one or both cues are strong:

ĝ2 ≫ 1−λ( )  [S37]

λĝ2 +1− λ( ) = ĝ2 λ + 1− λ
ĝ2

⎛
⎝⎜

⎞
⎠⎟
≈ λĝ2( )

.

In addition, when one or both cues are strong, then the 
first term of E (Eq. S24) dominates and the responses 
converge to minimize the feedforward drive, i.e.,

yn
(1) ≈ zn

(1)
, [S38]

And when one or both cues are strong, then ĝ ≈ g:

ĝ = yn
(1)

n
∑ ≈ zn

(1)

n
∑

  [S39]

 
= w1 yn1

(0) +w2 yn2
(0)

n
∑

n
∑

⎛

⎝
⎜

⎞

⎠
⎟

 (see Eq. S24)

 
≈ w1g1 ψn s( )+w2g2 ψn s( )

n
∑

n
∑

⎛

⎝
⎜

⎞

⎠
⎟

  (see Eq. S26)
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 = w1g1 +w2g2( ) = g  (see Eqs. S25 and S30)

Consequently, the readout (Eq. S33) can be approximated:
   [S40]

h s | y(1)( ) ≈ exp − 1
2
α λĝ2( ) yj

(1)

ĝ
−ψ j (s)

⎛

⎝⎜
⎞

⎠⎟

2

j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (see Eqs. S33 and S37)

           

=exp − 1
2
αλ yj

(1) − ĝψ j (s)( )2
j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

           

≈ exp − 1
2σ 2 z j

(1) − gψ j (s)( )2
j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (see Eqs. S32, S38, S39)

           
∝ p z(1) | s( )  (see Eq. S30)

Finally, when one or both cues are strong, then 
p(z(1) | s) is approximately proportional to the likelihood 
p(y1(0),y2(0) | s). The negative log likelihoods are:

  [S41]

− log p y1
(0),y2

(0) | s( )⎡
⎣

⎤
⎦=

yn1
(0) − g1ψn (s)( )2

2σ 1
2 +

yn2
(0) − g2ψn (s)( )2

2σ 2
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥n

∑ − log(c0 )

− log p z(1) | s( )⎡
⎣

⎤
⎦=

zn
(1) − gψn (s)( )2

2σ 2
n
∑ − log(c1)

,

where c0 and c1 are proportionality constants. It suffices to 
show that each of the terms in the summations are ap-
proximately equal to one another:
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.

The last step relies on an approximation that the cross-
term can be ignored. This approximation is reasonable 
when the stimulus strengths of one or both cues are large, 
specifically when either: g1/σ1 ≫ g2/σ2, or g2/σ2 ≫ g1/σ1, or 
both g1/σ1 ≫ 1, and g2/σ2 ≫ 1.
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